???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: http://www.bdtd.ueg.br/handle/tede/211
Tipo do documento: Dissertação
Título: Redes neurais artificiais aplicadas à modelagem da variabilidade espacial de atributos físico-químicos de solos do cerrado
Autor: Bittar, Roberto Dib 
Primeiro orientador: Alves, Sueli Martins de Freitas
Primeiro coorientador: Melo, Francisco Ramos de
Primeiro membro da banca: Devilla, Ivano Alessandro
Resumo: A agricultura, como outras atividades, está inserida na globalização. Desta forma, sofre concorrência e influência do que acontece no mundo, implicando na necessidade de melhor gerenciamento com o objetivo de minimizar custos e aumentar a produtividade. A agricultura de precisão oferece a tecnologia necessária para realizar esse gerenciamento. Possibilita aquisição de dados em uma vasta gama, processamento adequado e posterior utilização dessas informações para que impliquem em efetiva melhoria. Desta forma, raciona insumos, recursos naturais e humanos, logo, permite maior ganho final. Um dos fatores que influenciam a produção é a variabilidade espacial e temporal dos atributos do solo. Ao conhecer essa variação, é possível usar técnicas para adequar o solo às necessidades de cada cultura. A geoestatística está inserida na agricultura de precisão, possibilitando, a partir de determinado número de pontos georeferenciados amostrados, detectar e modelar essa variabilidade, resultando em conhecimento da área com o detalhamento necessário. As Redes Neurais Artificiais (RNA), ramo da inteligência artificial, buscam imitar o raciocínio humano e se mostram capazes de realizar inferência de dados. É considerada um aproximador universal, com capacidade de aprender. Uma qualidade das RNAs é estabelecer relação das características multidimensionais consideradas no problema para identificar o padrão ou classe do objeto apresentado. Desta forma, tem capacidade de ser uma razoável alternativa para realização da modelagem da variabilidade espacial. Neste trabalho aplicou-se as RNAs com objetivo de realizar a modelagem da variabilidade espacial de atributos do solo. Para tal foi realizada: coleta de dados, análise estatística descritiva, análise geoestatística, definição, treinamento de diferentes RNAs e consecutiva escolha das redes que apresentaram menor erro médio, posterior comparação entre os resultados estimados versus aferidos, cálculo do erro médio relativo finalizando com comparação das estimativas realizadas por Krigagem ordinária dos atributos que apresentaram dependência espacial. Foi possível concluir que as RNAs apresentam potencial para realizar satisfatoriamente a modelagem da variabilidade espacial de atributos físicoquímicos do solo.
Abstract: Agriculture, like other activities is becoming global and therefore, it suffers competition and influence from what happens around the world. This behaviour is forcing the use of better management in order to minimize costs and increase productivity. The precision agriculture provides the necessary technology to achieve this level of management. Additionally, it enables the acquisition of wide range data, proper processing of this data and subsequent use of the information for effective improvement. Consequently, it optimizes material, natural and human resources and therefore allows higher productivity. One of the factors that influence the production is the spatial and temporal variability of soil properties. By knowing this variation, one can use management techniques to adjust the soil to the needs of each crop. By using the geostatistics inserted in precision agriculture, it is possible with a certain number of sample points to detect and model this variability, inferring the understanding of the area with the necessary detail. The Artificial Neural Networks (ANN), a branch of artificial intelligence, seeks to emulate human reasoning and is able to perform data inference and it is considered a universal approximator with ability to learn. One of the ANN features is the capability to establish multidimensional characteristic functions to identify presented patterns or object classes. Thus, it has the capacity of becoming a reasonable alternative to successfully implement modeling of spatial variability. Were applided the ANN for modeling the spatial variability of soil attributes and to accomplish this goal the following tasks have taken place: data collection, descriptive statistics and geostatistics analysis. The definition, training of different ANN and consequent choice of networks that had lower mean error have finished with the comparison between estimated versus measured results and the calculation of the mean relative error ending with comparing the estimates values made by ordinary Kriging of the atributes that presented spatial dependence. Consequently, it was possible to conclude that ANN has the potential to accomplish the modeling of spatial variability of physical and chemical soil properties.
Palavras-chave: Inteligência Artificial
Geoestatística
Inferência
Agricultura de precisão
Artificial Intelligence
Geostatistics
Inference
computing
Precision agriculture
Área(s) do CNPq: CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Idioma: por
País: Brasil
Instituição: Universidade Estadual de Goiás
Sigla da instituição: UEG
Departamento: UEG ::Coordenação de Mestrado em Engenharia Agrícola
Programa: Programa de Pós-Graduação Stricto sensu em Engenharia Agrícola
Citação: BITTAR, Roberto Dib. Redes neurais artificiais aplicadas à modelagem da variabilidade espacial de atributos físico-químicos de solos do cerrado. 2016. 126 f. Dissertação (Mestrado em Engenharia Agrícola), Câmpus Central - Sede: Anápolis - CET, Universidade Estadual de Goiás, Anápolis.
Tipo de acesso: Acesso Aberto
URI: http://www.bdtd.ueg.br/tede/handle/tede/211
Data de defesa: 23-Mar-2016
Appears in Collections:Mestrado em Engenharia Agrícola

Files in This Item:
File Description SizeFormat 
ROBERTO_DIB_BITTAR_M_E_A.pdf4,63 MBAdobe PDFDownload/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.